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1 Relations

1.1 Exists and Forall Quotients

Given a poset P and an equivalence relation ∼, we might attempt to define an order on the
quotient in one of two ways:

1.1.1 ∃-Quotient

∀X, Y ∈ P : X ≤∼,∃ Y ⇐⇒ ∃x ∈ X, y ∈ Y : x ≤ y
This relation guarantees that the projection is order-preserving. Indeed any relation on

the quotient for which the projection is order-preserving necessarily extends this relation.
However the relation may fail to be a partial order.

Figure 1: Violations of poset axioms in quotients

(a) A violation of antisymmetry (b) A violation of transitivity

1.1.2 ∀-Quotient

∀X, Y ∈ P : X ≤′∼,∀ Y ⇐⇒ ∀x ∈ X, y ∈ Y : x ≤ y
In general the projection map will not be order-preserving onto this relation. However,

we can guarantee the relation will be a partial ordering, with a slight modification to ensure
reflexivity:
∀X, Y ∈ P : X ≤∼,∀ Y ⇐⇒ ∀x ∈ X, y ∈ Y : x ≤ y ∨X = Y

Lemma 1.1. ≤∼,∀ is a partial order.

Proof.

� Reflexivity: By construction.

� Antisymmetry: Let X, Y ∈ P/ ∼ with X ≤∼,∀ Y and Y ≤∼,∀ X. Suppose for
contradiction X 6= Y . Then by definition of ≤∼,∀, for all x ∈ X, y ∈ Y : x ≤ y and
y ≤ x; and ≤ is antisymmetric, so x = y. Since X = [x]∼, Y = [y]∼, this implies
X = Y , a contradiction.
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� Transitivity: Let X, Y, Z ∈ P/ ∼ with X ≤∼,∀ Y and Y ≤∼,∀ Z. If X = Y or Y = Z
then trivially X ≤∼,∀ Z, so suppose X 6= Y 6= Z. Then by definition of ≤∼,∀, for all
x ∈ X, y ∈ Y, z ∈ Z : x ≤ y and y ≤ z; and ≤ is transitive, so x ≤ z. This holds for all
x ∈ X, z ∈ Z, so X ≤∼,∀ Z.

We see that violations of the poset axioms may occur in ≤∼,∃ when different equivalence
class representatives are chosen for the comparisons. Similarly ≤∼,∀ fails to preserve the
order under projection when not all members of a pair of equivalence classes have the same
relationship. That is, failures occur when comparing by representatives is not well-defined.
We turn our attention to equivalence relations where this comaprison is well-defined.

1.2 Reduction relations

Definition 1.2. Given (P,≤) a poset, an equivalence relation ∼ on P is a reduction
relation if ∀x1, x2, y1, y2 ∈ P

x2 ∼ x1 6∼ y1 ∼ y2

=⇒ x1 < y1 ⇐⇒ x2 < y2
(1.2.1)

This is equivalent to saying the relation <∼ on P/ ∼ given by

[x]∼ <∼ [y]∼ ⇐⇒ x < y and [x]∼ 6= [y]∼(1.2.2)

is well-defined; we call the corresponding non-strict relation ≤∼ the quotient order.

Remark. We explicitly do not compare a class to itself by representative since this necessitates
all members of an equivalence class to be less than each other, violating antisymmetry and
rendering the concept useless for partial orders. We instead declare reflexivity by fiat.

Theorem 1.3. Given (P,≤) a poset and ∼ an equivalence relation on P , ∼ is a reduction
relation iff ≤∼,∃=≤∼,∀.

Proof. Suppose ≤∼,∃=≤∼,∀. Let x2 ∼ x1 6∼ y1 ∼ y2 and x1 ≤ y1.
Then,

[x1]∼ ≤∼,∃ [y1]∼

=⇒ [x1]∼ ≤∼,∀ [y1]∼

Since x2 ∈ [x1]∼, y2 ∈ [y1]∼

=⇒ x2 ≤ y2

So ∼ is a reduction relation.
Suppose ∼ is a reduction relation. ≤∼,∀⊆≤∼,∃ so it suffices to show ≤∼,∃⊆≤∼,∀. Let

X, Y ∈ P/ ∼ with X ≤∼,∃ Y . If X = Y then X ≤∼,∀ Y . Otherwise ∃x ∈ X, y ∈ Y with
x ≤ y. ∀x′ ∈ X, y′ ∈ Y we have x ∼ x′ and y ∼ y′ and since ∼ is a reduction relation and
X 6= Y , x ≤ y =⇒ x′ ≤ y′. Thus X ≤∼,∀ Y and so ≤∼,∃⊆≤∼,∀.
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Corollary 1.4. For a reduction relation on a poset, the quotient order is a partial ordering
and the projection map is order-preserving.

Proof. This follows immediately from 1.3 and the observations about ≤∼,∀ and ≤∼,∃.

Theorem 1.5. Let P be a poset and ∼ a reduction relation on P . If R is a poset, f : P → R
is order-preserving and ∼ ⊆ ker f , then the factor map f̄ : P/ ∼→ R satisfying f̄([x]∼) =
f(x) is order-preserving.

Proof. Let [x], [y] ∈ P/ ∼ with [x] ≤ [y].
If [x] = [y] then f̄([x]) = f̄([y]).
If [x] < [y] then from definition (1.2.2), x < y and since f is order-preserving

f̄([x]) = f(x) ≤ f(y) = f̄([y])

So in all cases f̄([x]) ≤ f̄([y])

Figure 2: Reduction relation examples
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2 Compositions and Reductions

2.1 Compositions

Definition 2.1. Given a collection of pairwise disjoint posets {(Pα,≤α)}α∈I , and a partial

order ≤ on {Pα}α∈I , the composition ≤ [≤α]α∈I is the relation � on
⋃
α∈I

Pα given by

∀α ∈ I, x, y ∈ Pα : x � y ⇐⇒ x ≤α y(2.1.1)

∀α 6= β ∈ I, x ∈ Pα, y ∈ Pβ : x ≺ y ⇐⇒ Pα < Pβ(2.1.2)

That is, compare elements in the same block using that block’s order, and elements from
different blocks using the ordering on the blocks.

Theorem 2.2. If {(Pα,≤α)}α∈I is a collection of disjoint posets and ≤ is a partial order on
{Pα}α∈I , ≤ [≤α]α∈I is a partial order on

⋃
α∈I Pα.

Proof. Let P :=
⋃
α∈I

Pα and �:=≤ [≤α]α∈I .

Reflexivity: Let x ∈ P . Then x ∈ Pα for some α ∈ I. ≤α is reflexive, hence x ≤α x
and from (2.1.1), x � x.

Antisymmetry: Let x, y ∈ P such that x � y and y � x and let α, β ∈ I with
x ∈ Pα, y ∈ Pβ. If α 6= β, then x 6= y so by (2.1.2) Pα < Pβ and Pβ < Pα; but < is
antisymmetric so this is a contradiction and so α = β. Then by (2.1.1) x ≤α y and y ≤α x
and ≤α is antisymmetric, so x = y.

Transitivity: Let x, y, z ∈ P such that x � y and y � z, and let α, β, γ ∈ I with
x ∈ Pα, y ∈ Pβ, z ∈ Pγ.

If α = β = γ then by (2.1.1) x ≤α y and y ≤α z. ≤α is transitive so x ≤α z and then by
(2.1.1) again x � z.

If α = β 6= γ, then y 6= z and by (2.1.2) y ≺ z =⇒ Pβ < Pγ and then by (2.1.2)
x ∈ Pβ, z ∈ Pγ =⇒ x ≺ z.

If α 6= β = γ, then x 6= y and by (2.1.2) x ≺ y =⇒ Pα < Pβ and then by (2.1.2)
x ∈ Pα, z ∈ Pβ =⇒ x ≺ z.

If α 6= β and β 6= γ, then x 6= y and y 6= z and by (2.1.2) x ≺ y =⇒ Pα < Pβ and
y ≺ z =⇒ Pβ < Pγ. By transitivity of <, Pα < Pγ (in particular Pα 6= Pγ) and thus by
(2.1.2) x ∈ Pα, z ∈ Pγ =⇒ x ≺ z.
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2.2 Reductions

Definition 2.3. A reduction is an anti-composition: a partition of a poset such that the
restrictions of the order to the blocks can be composed to reobtain the original order.

That is (R,≤R) is a reduction of a poset (P,≤P ) if R is a partition of P , ≤R is a partial
order on R and

≤P=≤R [≤P |X ]X∈R

Note that necessarily for disjoint posets (Pα,≤α), ({Pα}α,≤) is a reduction of (
⋃
α Pα,≤ [≤α]α).

Theorem 2.4. If (P,≤) is a poset and ∼ is a reduction relation on P , then (P/ ∼,≤∼) is
a reduction of P .

Proof. Let ≤′:=≤∼ [≤ |X ]X∈P/∼. Let x, y ∈ P
If y ∈ [x]∼ then

x ≤′ y
(2.1.1)⇐==⇒x ≤ |[x]y
⇐⇒ x ≤ y

If y 6∈ [x]∼ then y 6= x and

x <′ y

(2.1.2)⇐==⇒[x] <∼ [y]

(1.2.2)⇐==⇒x < y

So ≤=≤′.

Theorem 2.5. If (P,≤P ) is a poset and (R,≤R) is a reduction of P , then the equivalence
relation ∼R corresponding to R is a reduction relation and ≤R=≤∼R, the quotient order on
P/ ∼R.

Proof. Suppose x2 ∼R x1 6∼R y1 ∼R y2. Then there exist X 6= Y ∈ R with x1, x2 ∈ X and
y1, y2 ∈ Y . By (2.3) ≤P=≤R [≤P |X ]X∈R, and x1 6= y1, x2 6= y2, so

x1 ≤P y1
⇐⇒ x1(≤R [≤ |X ]X∈R)y1
(2.1.2)⇐==⇒X <R Y

(2.1.2)⇐==⇒x2(≤R [≤ |X ]X∈R)y2

⇐⇒ x2 ≤P y2

So ∼R is a reduction relation.
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∀X, Y ∈ R, there exist x, y ∈ P with X = [x]∼R and Y = [y]∼R .

X <R Y

(2.1.2)⇐==⇒x < y

(1.2.2)⇐==⇒X = [x]∼R <∼R [y]∼R = Y

So ≤R=≤∼R .

Theorem 2.5 gives us that a partition R of a poset P has at most one order yielding a
reduction, so we can unambiguously refer to R as a reduction of P . Further, taking theorems
2.4 and 2.5 together we see that a partition is a reduction if and only if the corresponding
equivalence relation is a reduction relation.
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3 Maps

Definition 3.1. Let (P,≤P ) and (R,≤R) be posets. A function f : P → R is a reduction
map if ∀x, y ∈ P

x ≤P y =⇒ f(x) ≤R f(y)(3.1.1)

f(x) <R f(y) =⇒ x <P y(3.1.2)

or equivalently

f(x) 6= f(y) =⇒
x <P y ⇐⇒ f(x) <R f(y)

(3.1.3)

Remark 3.2. For (P,≤P ) and (R,≤R) posets and f : P → R recall f is:

order-preserving if x ≤P y =⇒ f(x) ≤R f(y)(3.2.1a)

strictly order-preserving if x <P y =⇒ f(x) <R f(y)(3.2.1b)

order-reflecting if f(x) ≤R f(y) =⇒ x ≤P y(3.2.1c)

strictly order-reflecting if f(x) <R f(y) =⇒ x <P y(3.2.1d)

Thus a reduction map is an order-preserving, strictly order-reflecting map. It is straightfor-
ward to check each of these properties is closed under composition, hence reduction maps
are closed under composition.

Lemma 3.3. f is order-reflecting iff it is injective and strictly order-reflecting.

Proof. Suppose f is order-reflecting and let x, y ∈ P . If f(x) = f(y) then

f(x) ≤R f(y) and f(y) ≤R f(x)

(3.2.1c)
====⇒x ≤P y and y ≤P x

=⇒ x = y

So f is injective. If f(x) <R f(y) then x 6= y and by (3.2.1c) x ≤P y, so x <P y and f is
strictly order-reflecting.

Suppose f is injective and strictly order-reflecting and let x, y ∈ P . If f(x) ≤R f(y)
either:

� f(x) = f(y) which by injectivity means x = y =⇒ x ≤P y

� Or f(x) <R f(y) which by (3.2.1d) means x <P y =⇒ x ≤P y

So (3.2.1c) is satisfied and f is order-reflecting.
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Theorem 3.4. f is an order embedding iff it is an injective reduction map.

Proof. By definition an order embedding is an order-reflecting, order-preserving map. By
(3.3) this is equivalent to an injective, strictly order-reflecting, and order-preserving map,
which is quivalent to an injective reduction map.

Remark 3.5. We can observe that strictly order-preserving implies order-preserving
and order-reflecting implies strictly order-reflecting. From (3.3) order-reflecting im-
plies injectivity, and for an injective map, order-preserving and strictly order-preserving are
equivalent, so being an embedding is also equivalent to being a strictly order-preserving,
order-reflecting map. That is being an embedding can be seen to be taking the stronger of
each property pair, while being a reduction map is taking the weaker of each property pair.

The following two theorems show that reduction relations are precisely the kernels of
reduction maps.

Theorem 3.6. Let (P,≤P ) and (R,≤R) be posets and let f : P → R be a reduction map.
Then ker f is a reduction relation.

Proof. Let x1, x2, y1, y2 ∈ P such that f(x2) = f(x1) 6= f(y1) = f(y2). Then if x1 <P y1,
3.1.1 implies f(x1) ≤R f(y1); f(x1) = f(x2) and f(y1) = f(y2) imply f(x2) ≤R f(y2) and
f(x2) 6= f(y2) implies f(x2) <R f(y2) so from 3.1.2 x2 <P y2.

Theorem 3.7. Let ∼ be a reduction relation on a poset (P,≤P ). Then the projection map
[·]∼ : P → P/ ∼ is a reduction map.

Proof. This follows immediately from 1.2.2 and 3.1.3.

Sections are usually defined as right inverses to surjective functions; here we broaden
that definition slightly to include arbitrary functions:

Definition 3.8. For a function f : A→ B, a pseudosection of f is a function g : im(f)→
A such that fg = idim(f).

Lemma 3.9. If f : A→ B is a function and f(x) 6= f(y) for some x, y ∈ A, there exists a
pseudosection g of f with g(f(x)) = x and g(f(y)) = y.

Proof. Let g′ : im(f)→ A be an arbitrary pseudosection of f , and define g : im(f)→ A as

g(a) =


x for a = f(x)

y for a = f(y)

g′(a) otherwise

which is well-defined when f(x) 6= f(y).
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Theorem 3.10. Let (P,≤P ) and (R,≤R) be posets and let f : P → R be a function. TFAE:

1. f is a reduction map.

2. f is order-preserving and every pseudosection of f is order-preserving

3. Every pseudosection of f is an embedding

Proof.
1 =⇒ 2) Reduction maps are order-preserving, so it suffices to show every pseudosection

is order-preserving. Let g be a pseudosection of f , and suppose X ≤R Y for some X, Y ∈
im(f). If X = Y then g(X) = g(Y ) =⇒ g(X) ≤P g(Y ). Otherwise f(g(X)) = X <R Y =
f(g(Y )) so by 3.1.2 g(X) <P g(Y ) =⇒ g(X) ≤P g(Y ). So g is order-preserving.

2 =⇒ 3) Let g be a pseudosection of f . Suppose g(X) ≤P g(Y ) for some X, Y ∈ im(f).
Then since f is order-preserving, X = f(g(X)) ≤R f(g(Y )) = Y . So g is order-reflecting
and by assumption order-preserving, hence an embedding.

3 =⇒ 1) Order-preserving: Let x, y ∈ P with x ≤P y. If f(x) = f(y) then trivially
f(x) ≤R f(y). Otherwise, by (3.9) there exists a pseudosection g of f taking f(x) to x and
f(y) to y. Then g(f(x)) = x <P y = g(f(y)) and by assumption g is an embedding, so
f(x) <R f(y).

Strictly order-reflecting: Let x, y ∈ P with f(x) <R f(y) and let g be a pseudosection
of f taking f(x) to x and f(y) to y. By assumption g is an embedding so x = g(f(x)) <P

g(f(y)) = y.

In particular from 3.4 all pseudosections of a reduction map are reduction maps.

3.1 First isomorphism theorem

Theorem 3.11. Let (P,≤P ) and (R,≤R) be posets and let ∼ be a reduction relation on P .
If f : P → R is a reduction map with ∼ ⊆ ker f , then the factor map f̄ is a reduction map.

Proof. Since f is a reduction map it is order-preserving, so by theorem 1.5 f̄ is order-
preserving.

Let X, Y ∈ P/ ∼ with f̄(X) <R f̄(Y ). There exist x, y ∈ P with X = [x], Y = [y] so
we have f̄(X) = f̄([x]) = f(x) and f̄(Y ) = f̄([y]) = f(y). Then f(x) <R f(y) and f is
strictly order reflecting, hence x <P y and [·] is order-preserving so X = [x] ≤∼ [y] = Y .
f̄(X) <R f̄(Y ) =⇒ f̄(X) 6= f̄(Y ) =⇒ X 6= Y , so X <∼ Y and thus f̄ is strictly order
reflecting.

As a corrolary

Theorem 3.12 (First Isomorphism Theorem).
If (P,≤P ) and (R,≤R) are posets and f : P → R is a reduction map, then P/ ker f ∼= im f .

Proof. Letting ∼ := ker f in theorem 3.11, f̄ : P/ ker f → R is a reduction map and must be
injective, so from theorem 3.4 f̄ is an order embedding, which is precisely an isomorphism
onto im f .
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4 Components

Definition 4.1. A non-empty subset C of a poset (P,≤) is a component of P if ∀x, y ∈
C, z ∈ P \ C

x < z

m
y < z

and

z < x

m
z < y

(4.1.1)

Notation. For x, y in a poset (P,≤) exactly one is true: x = y, x < y, x > y, or x and y
are incomparable. We define the function ≤∗: P × P → {=, <,>, ||} taking a pair to their
relationship. (todo: Should avoid overloading the symbols)

The preceeding condition then becomes ≤∗(x, z) = ≤∗(y, z), while the reduction relation
condition (1.2.1) becomes

x2 ∼ x1 6∼ y1 ∼ y2

=⇒ ≤∗(x1, y1) = ≤∗(x2, y2)
(4.1.2)

and the quotient order satisfies

≤∗R([x]R, [y]R) = ≤∗(x, y) when [x]∼ 6= [y]∼(4.1.3)

Intuitively, a component is a subset that may have non-trivial local structure, but globally
its points compare the same to all external points; thus it can be collapsed to a point without
losing the global structure.

Theorem 4.2. Let (P,≤) be a poset and ∼ an equivalence relation on P . Then ∼ is a
reduction relation iff each equivalence class of ∼ is a component.

Proof. Suppose ∼ is a reduction relation and let C ∈ P/ ∼. Let x, y ∈ C, z ∈ P \ C. Then
C = [y] = [x] 6= [z] = [z] so by (4.1.2) ≤∗(x, z) = ≤∗(y, z) and so C is a component.

Suppose that every element of P/ ∼ is a component. Let x2 ∼ x1 6∼ y1 ∼ y2. Since
x1, x2 ∈ [x1], y1 6∈ [x1], and [x1] ∈ P/ ∼ is a component of P , from (4.1.1) ≤∗(x1, y1) =
≤∗(x2, y1). Similarly, since y1, y2 ∈ [y1], x2 6∈ [y1], ≤∗(x2, y1) = ≤∗(x2, y2). Taken together
we have, ≤∗(x1, y1) = ≤∗(x2, y2), satisfying (4.1.2).

In other words, a reduction is a partition into components.

Lemma 4.3. If (P,≤) is a poset and {Cα} is a collection of components of P , then
⋂
αCα

is either empty or a component of P .

Proof. Suppose
⋂
αCα is non-empty and let x, y ∈

⋂
αCα, z 6∈

⋂
αCα. Then there exists some

α for which z 6∈ Cα. Necessarily x, y ∈ Cα, and Cα is a component of P , so≤∗(x, z) = ≤∗(y, z)
satisfying (4.1.1).

Lemma 4.4. If (P,≤) is a poset and C and D are components of P with non-empty inter-
section, then C ∪D is a component of P .
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Proof. Fix w ∈ C ∩D. Let x, y ∈ C ∪D and z 6∈ C ∪D. x must be in either C or D, w is
in both, and z is in neither so ≤∗(x, z) = ≤∗(w, z). Similarly, ≤∗(w, z) = ≤∗(y, z). Taken
together, ≤∗(x, z) = ≤∗(y, z), so C ∪D is a component.

Lemma 4.5. If (P,≤) is a poset, C is a component of P and D is a component of (C,≤ |C),
then D is a component of P .

Proof. Let x, y ∈ D, z 6∈ D. If z ∈ C \D then since D is a component of C,

≤∗(x, z) =≤ |∗C(x, z) =≤ |∗C(y, z) = ≤∗(y, z)

Otherwise z ∈ P \ C and x, y ∈ C a component of P , so ≤∗(x, z) = ≤∗(y, z).
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5 Reduction Semilattice

For a partition R of a set P we state the following without proof, for all x ∈ P :

� If there exists B ⊆ R with x ∈
⋃
B, [x]R ∈ B

Lemma 5.1. For a poset (P,≤) and reduction R of P , the projection πR[C] of a component
C of P is a component of R.

Proof. Let [x]R, [y]R ∈ πR[C] for some x, y ∈ C, and let [z]R ∈ R \ πR[C]. Necessarily
z 6∈ C and C is a component, so ≤∗(x, z) = ≤∗(y, z). [x]R 6= [z]R 6= [y]R so from (4.1.3)
≤∗R([x]R, [z]R) = ≤∗R([y]R, [z]R).

Lemma 5.2. For a poset (P,≤) and reduction R of P , the union
⋃
D of a component D of

R is a component of P .

Proof. Let x, y ∈
⋃
D and let z 6∈

⋃
D. Then [x]R, [y]R ∈ D and [z]R 6∈ D with D

a component, so ≤∗R([x]R, [z]R) = ≤∗R([y]R, [z]R) and [x]R 6= [z]R 6= [y]R, so from (4.1.3)
≤∗(x, z) = ≤∗(y, z).

The operations πR[·] and
⋃
· map between components of P and components of R. In

general πR[·] is not injective on components of P . However lemma (5.2) suggests we restrict
our attention to the unions of components of R.

Definition 5.3. For a poset (P,≤) and reduction R of P , a subset A ⊆ P is R-compatible
if it can be written as a union of members of R, or equivalently if ∀x ∈ A : [x]R ⊆ A.

Theorem 5.4. πR[·] : {R-compatible components of P} → {Components of R} is bijective,
with inverse

⋃
· : {Components of R} → {R-compatible components of P}

Proof. If C is an R-compatible component of P ,
⋃
πR[C] = C: ∀x ∈ C, [x]R ∈ πR[C]

and x ∈ [x]R so x ∈
⋃
πR[C]. ∀x ∈

⋃
πR[C], [x]R ∈ πR[C] so ∃y ∈ C, [y]R = [x]R. C is

R-compatible so [y]R ⊆ C and x ∈ [y]R so x ∈ C.
If D is a component of R, πR[

⋃
D] = D: ∀X ∈ D, let x ∈ X. Then x ∈

⋃
D and X =

[x]R ∈ πR[
⋃
D]. ∀X ∈ πR[

⋃
D], let X = [x]R for some x ∈

⋃
D. Then X = [x]R ∈ D.

So the components of R and the R-compatible components of P can be naturally identi-
fied. This extends to an identification of the reductions of R with the reductions of P coarser
than R. 1

Theorem 5.5 (Lattice theorem). For a poset (P,≤) and reduction R of P , the set of reduc-
tions of P coarser than R and the set of reductions of R are in one-to-one correspondence
under the mappings:

F : {Reductions of P coarser than R} → {Reductions of R}
F = S 7→ {πR[C], C ∈ S}

1In fact the identification of reductions can be expanded to an isomorphism of categories.
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and

G : {Reductions of R} → {Reductions of P coarser than R}

G = T 7→
{⋃

D,D ∈ T
}

Proof. We first wish to show that for a reduction S of P coarser than R and a reduction T
of R, F (S) is in fact a reduction of R and G(T ) is a reduction of P coarser than R.

For [x]R ∈ R, x ∈ [x]S ∈ S so [x]R ∈ πR[[x]S] ∈ F (S). Hence F (S) covers R. Suppose
∃C1, C2 ∈ S with πR[C1] ∩ πR[C2] 6= ∅. In particular there must exist X ∈ πR[C1] ∩ πR[C2]
meaning ∃x1 ∈ C1, x2 ∈ C2 : [x1]R = X = [x2]R. Since S is coarser than R, C1 and C2 are
both R-compatible so X = [x1]R ⊆ C1 and X = [x2]R ⊆ C2. Then C1 ∩ C2 6= ∅ but S is a
partition so C1 = C2 and πR[C1] = πR[C2]. Thus F (S) is pairwise disjoint.

So F (S) forms a partition of R and from (5.1) each πR[C] is a component for all C ∈ S
so F (S) is a reduction of R by (4.2).

Let x ∈ P . Then x ∈ [x]R, [x]R ⊆
⋃

[[x]R]T and
⋃

[[x]R]T ∈ G(T ) so G(T ) covers P .
Suppose ∃D1, D2 ∈ T with

⋃
D1 ∩

⋃
D2 6= ∅. Then ∃X1 ∈ D1, X2 ∈ D2 with X1 ∩X2 6= ∅.

R is a partition so X1 = X2 and so D1 ∩D2 6= ∅ and T is a partition so D1 = D2 and then⋃
D1 =

⋃
D2. Hence G(T ) is pairwise disjoint.

So G(T ) forms a partition of P and for each D ∈ T ,
⋃
D is a component of P from (5.2)

so again by (4.2), G(T ) is a reduction of P , and each
⋃
D is R-compatible by construction,

so G(T ) is coarser than R.

Finally applying (5.4)

GF (S) =
{⋃

D : D ∈ F (S)
}

=
{⋃

πR[C] : C ∈ S
}

= {C : C ∈ S} = S

and

FG(T ) = {πR[C] : C ∈ G(T )} =
{
πR

[⋃
D
]

: D ∈ T
}

= {D : D ∈ T} = T

so F−1 = G.

From this we see the “is a reduction of” relation is essentially transitive and every poset
can be considered the top of a join-semilattice of reductions; the common refinement of
reductions is again a reduction, giving arbitrary joins.

Lemma 5.6. The (arbitrary) intersection of reduction relations is a reduction relation; equiv-
alently the common refinement of reductions is a reduction.

Proof. Let {∼α}α be reduction relations on a poset P , and let ∼:=
⋂
α ∼α. As the intersec-

tion of equivalence relations, ∼ is an equivalence relation; whenever x2 ∼ x1 6∼ y1 ∼ y2, for
each α, x2 ∼α x1 6∼α y1 ∼α y2 and ∼α is a reduction relation so x1 < y1 ⇐⇒ x2 < y2 and
so by (1.2.1) ∼ is a reduction relation.
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6 Canonical

6.1 Irreducible reductions

Definition 6.1. A poset (P,≤) is irreducible if it admits no reductions other than the
identity reduction and the trivial reduction.

Theorem 6.2. Every finite poset admits an irreducible reduction.

Proof. If a poset admits no irreducible reduction, we can construct an infinite sequence of
non-identity reductions which transitively are each a reduction of the original, using the
identification in theorem (5.5). For a finite poset, any non-identity reduction must be of
strictly lesser order, so the preceeding is impossible.

Lemma 6.3. A poset (P,≤) is irreducible if and only if it contains no proper non-singleton
components.

Proof. Suppose C is a proper non-singleton component of P . Then in the partition {{x} : x ∈ P \ C}∪
{C}, since singletons are trivially components, this forms a reduction which is non-trivial
(since C is proper) and non-identity (since C is non-singleton)

Suppose R is a non-trivial, non-identity reduction of P . In particular, there must exist
some non-singleton C ∈ R (since R is non-identity) and C must be proper (since R is
non-trivial) and as a member of R, C is a component of P .

We now show that if a poset P admits an irreducible reduction of order greater than
2, it is the unique irreducible reduction of P and further that it must be a reduction of all
nontrivial reductions of P . Note that this is truly unique, not only up to isomorphism, as a
partition of the set P .

Lemma 6.4. Let (P,≤) be a poset, let R be a reduction of P , and C be a component of P .
Then C ′ := {x ∈ P : [x]R ⊆ C} is a component of P , and by (5.1) πR[C ′] is a component of
R.

Proof. Let x, y ∈ C ′, z ∈ P \ C ′. Then ∃z′ ∈ [z]R \ C, and since x, y ∈ C ′ ⊆ C and C
is a component, it follows that ≤∗(x, z′) = ≤∗(y, z′). Necessarily [x]R 6= [z′]R = [z]R and
[y]R 6= [z′]R = [z]R, so from (4.1.2) ≤∗(x, z) = ≤∗(x, z′) and ≤∗R(y, z) = ≤∗R(y, z′). Taking
these three equalities together, ≤∗(x, z) = ≤∗R(y, z), completing the proof.

Lemma 6.5. Let (P,≤) be a poset and let Q be an irreducible reduction of P with |Q| > 2.
If C is a component of P such that there exist X1 6= X2 ∈ Q with X1 ∩ C 6= ∅ 6= X2 ∩ C,
then C = P .

Proof. Since |Q| > 2, {X1, X2} is a proper non-singleton subset of the irreducible Q, hence
it is not a component by (6.3). So there must exist some X3 ∈ Q distinct from X1 and X2

such that
≤∗Q(X1, X3) 6= ≤∗Q(X2, X3)

15



Let x1 ∈ X1 ∩ C, x2 ∈ X2 ∩ C. Then for all x3 ∈ X3 since [x3]Q = X3 6= X1 = [x1]Q and
[x3]Q = X3 6= X2 = [x2]Q, by (4.1.3)

≤∗(x1, x3) 6= ≤∗(x2, x3)

But then since x1, x2 ∈ C which is a component, it follows that x3 ∈ C. x3 was arbitrary in
X3 so X3 ⊆ C. Letting C ′ be defined as in (6.4) we thus have X3 ∈ πQ[C ′].

Now X3 ∩ C 6= ∅ and X3 6= X1, so applying the preceeding reasoning again to X1 and
X3, there must exist some X4 ∈ Q distinct from X1 and X3 (possibly equal to X2) with
X4 ∈ πQ[C ′].

By (6.4) πQ[C ′] is a component of Q and since it contains X3 and X4 it is non-singleton,
so we must have πQ[C ′] = Q. But then P =

⋃
Q =

⋃
πQ[C ′] ⊆ C so C = P .

Equivalently, any proper component C of P must be fully contained in some unique
X ∈ Q, yielding the following:

Theorem 6.6. If Q is an irreducible reduction of (P,≤) with |Q| > 2, and R is any reduction
of P , Q is coarser than R.

Corollary 6.7. If Q is an irreducible reduction of (P,≤) with |Q| > 2, then Q is the unique
irreducible reduction of P .

6.2 Canonical reductions

In general, when a poset admits an irreducible reduction of order 2 it will not be unique.
However, up to isomorphism there are only two posets of order 2, and , and a given
poset may only admit reductions isomorphic to one or the other as we show below; that is
if a poset admits an irreducible reduction, it is unique up to isomorphism.

Lemma 6.8. A poset cannot admit reductions to both and .

Proof. Let (P,≤) be a poset and suppose for contradiction P admits a reduction R iso-

morphic to and a reduction S isomorphic to . Fix x ∈ P . Then there exist y, z ∈ P
with y 6∈ [x]R, z 6∈ [x]S. Note that members of distinct R classes must be incomparable
while members of distinct S classes must be comparable, so y 6∈ [x]R implies y and x are
incomparable which in turn implies y ∈ [x]S. Similarly z ∈ [x]R. Since y 6∈ [x]R which is a
component it follows that ≤∗(x, y) = ≤∗(z, y). Then since x and y are incomparable, so are
z and y. But this entails z ∈ [y]S = [x]S, a contradiction.

Definition 6.9. With the preceeding lemma and theorem (6.2) we observe that for any
finite, non-singleton poset (P,≤), exactly one of the following is true:

� P admits a reduction isomorphic to

� P admits a reduction isomorphic to

� P admits a reduction to an irreducible with order greater than 2
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We say P is parallel-canonical, series-canonical, or nonbinary-canonical respectively.

Definition 6.10. The cannonical reduction of a poset is the common refinement of all
its irreducible reductions.

The following lemma is used below in characterizing the canonical reduction.

Lemma 6.11. If (P,≤) is a poset and {∼α}α are reduction relations with ∼:=
⋂
α ∼α, then

∀x ∈ P, [x]∼ =
⋂
α[x]∼α.

Proof. Let y ∈ P . Then

y ∈ [x]∼

⇐⇒ y ∼ x

⇐⇒ y ∼α x,∀α
⇐⇒ y ∈ [x]∼α ,∀α

⇐⇒ y ∈
⋂
α

[x]∼α

6.2.1 Parallel Reductions

Definition 6.12. A non-trivial reduction of a poset is a parallel reduction if as a poset
it is an antichain.

Remark. We observe that a poset being an antichain can be expressed as ≤∗(x, y) = ||,∀x 6=
y.

Lemma 6.13. For a poset (P,≤), TFAE:

1. P is parallel-canonical (it admits a reduction isomorphic to )

2. P can be partitioned into two subsets, with no element of the one comparable to an
element of the other.

3. P admits a parallel reduction

Proof. 2 is just a restatement of 1, and 1 clearly implies 3, so we prove 3 implies 2. Let
R be a parallel reduction of P , and pick any X in R. Then ∀Y ∈ R \ {X}, since R is an
antichain, X is incomparable to Y , so by (1.2.1) every element of X is incomparable to every
element of Y , and so every element of X is incomparable to every element of

⋃
R \ {X},

and {X,
⋃
R \ {X}} partitions P .

Lemma 6.14. The canonical reduction of a parallel-canonical poset is the finest parallel
reduction.
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Proof. Let (P,≤) be a parallel-canonical poset with irreducible reductions Rα and let Q be
the common refinement of {Rα}. For all [x]Q 6= [y]Q ∈ Q, from (6.11) [x]Q =

⋂
α[x]Rα and

[y]Q =
⋂
α[y]Rα . Since [x]Q 6= [y]Q, ∃α, [x]Rα 6= [y]Rα . Rα is a parallel reduction, so by (1.2.1)

|| = ≤∗Rα([x]Rα , [y]Rα) = ≤∗(x, y) = ≤∗Q([x]Q, [y]Q)

That is Q is an antichain; a parallel reduction of P .
Now suppose R is a parallel reduction of P and let X ∈ R. Then as in the proof of (6.13),

{X,
⋃
R \X} is a reduction of P isomorphic to . In particular, Q refines {X,

⋃
R \X},

hence X is Q-compatible. Since this holds for all X ∈ R, Q refines R.

Lemma 6.15. A parallel reduction of a poset is the canonical reduction if and only if no
component is parallel-canonical.

Proof. Let (P,≤) be a poset and Q a parallel reduction of P . Note that P must be parallel-
canonical by (6.13).

Suppose that no element of Q is parallel-canonical, and let X ∈ Q. If R is any parallel
reduction, ∃Z ∈ R,X ∩ Z 6= ∅. Since R is parallel, for any Y ∈ R \ {Z}, ≤∗R(Z, Y ) =
||. Thus for all z ∈ Z, y ∈

⋃
Y ∈R\{Z} Y , ≤∗(z, y) = ||. In particular for all z ∈ X ∩

Z, y ∈ X ∩
⋃
Y ∈R\{R} Y , ≤∗(z, y) = ||. But then we’ve partitioned X into a pair of subsets

with incomparable elements; if both are non-empty from (6.13) X is parallel-canonical, a
contradiction. So one must be empty and X ∩ Z 6= ∅ so X ∩

⋃
Y ∈R\{R} Y = ∅. Then

X = X ∩ Z =⇒ X ⊆ Z. So for all X ∈ Q, X is contained in an element of R; that is Q
refines R.

Conversely suppose Q is the canonical reduction of P . Let X ∈ Q and suppose S is a
parallel reduction of X. We claim R := (Q \ {X}) ∪ S is a parallel reduction of P . R is a
partition of P refining Q whose elements are all components of P : each element of S is a
component of X, hence a component of P by (4.5) and each element of Q is a component of
P . Thus R is a reduction of P by (4.2) and finer than Q by construction. Let [x]R 6= [y]R ∈ R
for x, y ∈ P . If [x]R, [y]R ∈ S, then x, y ∈ X, [x]R = [x]S, [y]R = [y]S and S is parallel so

|| = ≤∗S([x]S, [y]S) = ≤∗R([x]R, [y]R)

If [x]R, [y]R ∈ Q \ {X}, [x]R = [x]Q, [y]R = [y]Q and Q is parallel so

|| = ≤∗Q([x]Q, [y]Q) = ≤∗R([x]R, [y]R)

Otherwise, WLOG [x]R ∈ Q \ {X} and [y]R ∈ S. Then [y]Q = X and

|| = ≤∗Q([x]Q, X) = ≤∗Q([x]Q, [y]Q) = ≤∗(x, y) = ≤∗R([x]R, [y]R)

Thus in all cases ≤∗R([x]R, [y]R) = ||; i.e. R is an antichain. But then R is a parallel
reduction refinining the canonical parallel reduction Q, so R = Q. In particular S is just
the trivial reduction of X. The trivial reduction is by definition not parallel, so this is a
contradiction.
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6.2.2 Series Reductions

Definition 6.16. A non-trivial reduction of a poset is a series reduction if as a poset it
is a chain.

Notation. We use X↑R to refer to the upper closure of {X} in R, {Y ∈ R : X ≤R Y }.
Similarly for the lower closure X↓R.

Lemma 6.17. For a poset (P,≤), TFAE:

1. P is series-canonical (it admits a reduction isomorphic to )

2. P can be partitioned into two subsets, with every element of one less than every element
of the other.

3. P admits a series reduction

Proof. 2 is just a restatement of 1, and 1 clearly implies 3, so we prove 3 implies 2.
Let R be a series reduction of P , and pick any X in R. Since R is non-singleton

and total, at least one of X↓R \ {X} or X↑R \ {X} must be nonempty, so at least one
of
{⋃(

X↓R \ {X}
)
,
⋃
X↑R

}
or
{⋃

X↓R,
⋃(

X↑R \ {X}
)}

must be a partion of P into two
non-empty subsets, and by construction all elements of one less than all elements of the
other.

Lemma 6.18. The canonical reduction of a series-canonical poset is the finest series reduc-
tion.

Proof. Let (P,≤) be a series-canonical poset with irreducible reductions Rα and let Q be
the common refinement of {Rα}. For all [x]Q 6= [y]Q ∈ Q, from (6.11) [x]Q =

⋂
α[x]Rα and

[y]Q =
⋂
α[y]Rα . Since [x]Q 6= [y]Q, ∃α, [x]Rα 6= [y]Rα . Then from (4.1.2)

≤∗Rα([x]Rα , [y]Rα) = ≤∗(x, y) = ≤∗Q([x]Q, [y]Q)

In particular, since Rα is a series reduction, [x]Rα and [y]Rα are comparable and hence so are
[x]Q and [y]Q. So Q is a chain; a series reduction of P .

Now supposeR is a series reduction of P and letX ∈ R. Let S1 :=
{⋃(

X↓R \ {X}
)
,
⋃
X↑R

}
and S2 :=

{⋃
X↓R,

⋃(
X↑R \ {X}

)}
. Then as in (6.17), either X↓R \ {X} is empty meaning⋃

X↓R = P hence Q-compatible, or else S1 is isomorphic to , in which case Q refines S1 by
construction and so

⋃
X↓R is Q-compatible. So in all cases

⋃
X↓R is Q-compatible, and simi-

larly
⋃
X↑R must be Q-compatible. But then for any x ∈ X, x ∈

⋃
X↓R =⇒ [x]Q ⊆

⋃
X↓R

and x ∈
⋃
X↑R =⇒ [x]Q ⊆

⋃
X↑R. Thus [x]Q ⊆

⋃
X↓R ∩

⋃
X↑R =

⋃
{X} = X, so X is

Q-compatible. This holds for arbitrary X ∈ R, so Q refines R.

Lemma 6.19. A series reduction of a poset is the canonical reduction if and only if no
component is series-canonical.
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Proof. Let (P,≤) be a poset and Q a series reduction of P . Note that P must be series-
canonical by (6.17).

Suppose that no element of Q is series-canonical, and let R be a series reduction. For any
X ∈ Q, ∃Z ∈ R,X∩Z 6= ∅. IfX∩

⋃(
Z↓R \ {Z}

)
6= ∅ then

{
X ∩

⋃(
Z↓R \ {Z}

)
, X ∩

⋃
Z↑R

}
is a reduction of X isomorphic to , a contradiction. Similarly, if X ∩

⋃(
Z↑R \ {Z}

)
6= ∅

then
{
X ∩

⋃
Z↓R, X ∩

⋃(
Z↑R \ {Z}

)}
is a reduction of X isomorphic to . Thus X ∩⋃(

Z↓R \ {Z}
)

= ∅ and X ∩
⋃(

Z↑R \ {Z}
)

= ∅; in other words X ⊆ Z. This holds for
arbitrary X ∈ Q, so Q refines R.

Conversely suppose Q is the canonical reduction of P . Let X ∈ Q and suppose S is a
series reduction of X. We claim R := (Q \ {X})∪S is a series reduction of P . R is a partition
of P refining Q whose elements are all components of P : each element of S is a component
of X, hence a component of P by (4.5), and each element of Q is a component of P . Thus
R is a reduction of P by (4.2) and finer than Q by construction. Let [x]R 6= [y]R ∈ R. If
[x]R, [y]R ∈ S then [x]R = [x]S and [y]R = [y]S and since S is a series reduction these are
comparable. If [x]R, [y]R ∈ Q \ {X} then [x]R = [x]Q and [y]R = [y]Q and since Q is a series
reduction these are comparable. Otherwise, WLOG [x]R ∈ Q \ {X} and [y]R ∈ S. Then
[y]Q = X 6= [x]Q, so from (4.1.2)

≤∗Q([x]Q, [y]Q) = ≤∗(x, y) = ≤∗R([x]R, [y]R)

Since Q is a series reduction, [x]Q and [y]Q are comparable, so [x]R and [y]R must be com-
parable as well; i.e. R is a chain. But then R is a series reduction refinining the canonical
series reduction Q, so R = Q. In particular S is just the trivial reduction of X. The trivial
reduction is by definition not series, so this is a contradiction.

6.3 Canonical composition

Definition 6.20. A poset is canonical if its canonical reduction is the identity reduction.

Theorem 6.21. A poset is canonnical if and only if it is an antichain, a chain, or an
irreducible of order greater than 2.

Proof. If the identity reduction of a poset is the canonical reduction, it must be an antichain,
a chain, or an irreducible of order greater than 2 from (6.9) and (6.7), (6.14), or (6.18); so
the original poset must be as well (by identifying with its identity reduction).

Conversely, antichains, chains, and irreducibles of order greater than two are canonical:

� The identity reduction of an antichain is necessarily the finest parallel reduction, hence
the canonical reduction from (6.14)

� The identity reduction of a chain is necessarily the finest series reduction, hence the
canonical reduction from (6.18)

� An irreducible of order greater than two has such an identity reduction, which by (6.7)
is the canonical reduction.
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Definition 6.22. If (Pα,≤α) are disjoint posets and ≤ is a partial order on {Pα}α, the
composition ≤ [≤α]α is canonical if {Pα}α is non-singleton and is the canonical reduction
of (
⋃
α Pα,≤ [≤α]α).

We explicitly exclude composition through a singleton from being canonical.

Lemma 6.23. For disjoint posets (Pα,≤α) and partial order ≤ on {Pα}α, the composition
≤ [≤α]α is canonical if and only if ({Pα}α,≤) is a canonical poset and

� If it is an antichain, no Pα is parallel-canonical

� If it is a chain, no Pα is series-canonical

Proof. (=⇒) As a canonical reduction ({Pα}α,≤) is an antichain, chain or irreducible of order
greater than two, and thus a canonical poset by (6.21). Further, if it is an antichain then by
(6.15) no Pα is parallel-canonical, and if it is a chain then by (6.19) no Pα is series-canonical.

(⇐=) As a canonical poset ({Pα}α,≤) is an antichain, a chain or an irreducible of order
greater than two by (6.21), and is by definition a reduction of (

⋃
α Pα,≤ [≤α]α).

� If it is an antichain then by assumption and (6.15) it is the canonical reduction.

� If it is a chain then by assumption and (6.19) it is the canonical reduction.

� If it is an irreducible of degree greater than two then by (6.7) it must be the canonical
reduction.

In all cases this means by definition the composition ≤ [≤α]α is canonical.

Definition 6.24. A composistion tree is a triple (T , P,≤P ) with ≤P a partial order on
P and T a set of composition trees, defined recursively:

� For a singleton poset ({p},≤p), ({}, {p},≤p) is a composition tree.

� If {Tα}α = {(Tα, Pα,≤α)}α are composition trees with {Pα} pairwise disjoint, and ≤
is a partial order on {Pα}α, then(

{Tα}α ,
⋃
α

Pα,≤ [≤α]α

)
is a composition tree.

A canonical composition tree is a composition tree where every composition is
canonical.

Remark 6.25. From (6.23) we observe that canonical composition trees are composition trees
where each interior node is a canonical poset, with no antichain children of antichain nodes
and no chain children of chain nodes.
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Theorem 6.26. Every finite poset can be obtained via a unique canonical composition tree.

Proof. We prove this by induction on the size of the poset.
By definition every singleton has an associated canonical composition tree with no sub-

trees, and since canonical compositions are non-singleton, it must be unique.
Now let n ∈ N and suppose ∀m ∈ N,m < n every poset of size m is obtained from

a unique canonical composition tree. Let (P,≤P ) be a poset of order n and let Q be its
canonical reduction. Then for each X ∈ Q, since Q is non-singleton, |X| < n. Letting
≤X :=≤P |X , from the induction hypothesis (X,≤X) is obtained from a unique canonical
composition tree TX = (TX , X,≤X). Then

� The elements of Q are pairwise disjoint,

� P =
⋃
X∈QX,

� by definition (2.3) ≤P=≤Q [≤X ]X∈Q,

� and as Q is the canonical reduction of P , that composition is canonical.

It follows that

TP =

(
{TX}X∈Q ,

⋃
X∈Q

X,≤Q [≤X ]X∈Q

)
=
(
{TX}X∈Q , P,≤P

)
is a canonical composition tree yielding P .

Further this must be unique: Suppose T ′P were another canonical composition tree yield-
ing P . Since P is non-singleton, T ′P must be of the form T ′P = ({Tα}α , P,≤P ) for some
canonical composition trees {Tα}α = {(Tα, Pα,≤α)}α and a partial order≤Q′ on Q′ := {Pα}α,
where

⋃
α Pα = P , ≤Q′ [≤α]α =≤P , and that composition must be canonical. But then both

Q and Q′ must be the canonical reduction for P , which is unique, so it follows that Q = Q′.
Further each X ∈ Q must equal Pα for some α, and since the canonical composition trees
for each X are unique, it follows that TX = Tα. Then

TP =
(
{TX}X∈Q , P,≤P

)
= ({Tα}α , P,≤P ) = T ′P

completing the proof.

Together remark (6.25) and theorem (6.26) show that every finite poset can be obtained
in a unique way from the class of canonical posets, which consist of the antichains, chains,
and irreducibles of order greater than 2. Thus in principle it should be possible to classify
all finite posets by classifying the irreducibles of order greater than 2. In particular, they
should be relatable by combinatorial species:

Let Po, P, P̂, S, Ŝ, N, and N̂ denote the species of posets, anti-chains, parallel-canonical
posets, chains, series-canonical posets, irreducible posets of order greater than two, and non-
binary canonical posets respectively. Then they are related in the following ways:
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� Po = X + P̂ + Ŝ + N̂

� P̂ = P ◦ (Po− P̂)

� Ŝ = S ◦ (Po− Ŝ)

� N̂ = N ◦Po

where X is the singleton species. Given that P and S are known to us, this should reduce
to an expression relating Po to N.
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